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Navigating Sinus Surgery
Some Background: Clinical and Technical



Endoscopic Sinus Surgery

• Functional sinus surgery
– Close proximity to critical structures
– Surgical navigation desired



• Patient-specific 3D model of anatomy
– Pre-operative (potentially outdated)
– Obtained from CT scan (usually)

• Intra-operative registration: Optical tracking
– CT to marker (via surface digitization)
– Endoscope / tool to anatomy
 Line of sight constraints
 Visualization on model

Challenges of Conventional Navigation



• Patient-specific 3D model of anatomy
– Pre-operative (potentially outdated)
– Obtained from CT scan (usually)

• Intra-operative registration: Optical tracking
– CT to marker (via surface digitization)
– Endoscope / tool to anatomy
 Line of sight constraints
 Visualization on model

• Observations
– Complex setups increase procedure time 
– Disruptive workflows promote frustration
 Where to innovate?

Challenges of Conventional Navigation



• Patient-specific 3D model of anatomy
– Pre-operative (potentially outdated)
– Obtained from CT scan (usually)
 Population-derived atlas of sinus anatomy

• Intra-operative registration: Optical tracking
– CT to marker (via surface digitization)
 Model to video registration
– Endoscope / tool to anatomy
 Line of sight constraints
 Visualization on model

Step 1: Navigating in the Absence of CT



• Patient-specific 3D model of anatomy
– Pre-operative (potentially outdated)
– Obtained from CT scan (usually)
 Reconstructed from endoscopy sequence

• Intra-operative registration: Optical tracking
– CT to marker (via surface digitization)
– Endoscope / tool to anatomy
 Line of sight constraints
 Visualization on model
 Everything relative to endoscopy

Step 2: Navigating Without Prior Information






Navigating in the Absence of CT
Towards Next-generation Image Guidance



Building the Population-based Model

• Build statistical shape models 
– Principal component analysis
– Capture anatomical variation

• Given shapes,  with correspondences, we can compute:

Mean: Variance:

Sinha, A., Liu, X., Reiter, A., Ishii, M., Hager, G. D., & Taylor, R. H. (2018, September). Endoscopic navigation in the absence of CT imaging. In International 
Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 64-71). Springer, Cham.



Building the Population-based Model

• Build statistical shape models 
– Principal component analysis
– Capture anatomical variation (middle turbinate)

Sinha, A., Liu, X., Reiter, A., Ishii, M., Hager, G. D., & Taylor, R. H. (2018, September). Endoscopic navigation in the absence of CT imaging. In International 
Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 64-71). Springer, Cham.



Estimating Patient Anatomy

• Deformable registration
– Optimize shape model model parameters
– Align with endoscopic video

• Given a new shape     , we can compute:

Weights: Estimated shape:

Sinha, A., Liu, X., Reiter, A., Ishii, M., Hager, G. D., & Taylor, R. H. (2018, September). Endoscopic navigation in the absence of CT imaging. In International 
Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 64-71). Springer, Cham.



Estimating Patient Anatomy

• Deformable registration
– Optimize shape model model parameters
– Align with endoscopic video

• Simultaneously, align rigidly

Can be solved with the 
Generalized Deformable Most Likely Oriented Point (GD-IMLOP)
algorithm 

Sinha, A., Liu, X., Reiter, A., Ishii, M., Hager, G. D., & Taylor, R. H. (2018, September). Endoscopic navigation in the absence of CT imaging. In International 
Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 64-71). Springer, Cham.



Estimating Patient Anatomy

• Deformable registration
– Optimize shape model model parameters
– Align with endoscopic video

• Simultaneous deformable and rigid alignment
to unseen shape 

• Great!

Sinha, A., Liu, X., Reiter, A., Ishii, M., Hager, G. D., & Taylor, R. H. (2018, September). Endoscopic navigation in the absence of CT imaging. In International 
Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 64-71). Springer, Cham.



Estimating Patient Anatomy

• Deformable registration
– Optimize shape model model parameters
– Align with endoscopic video

• Simultaneous deformable and rigid alignment
to unseen shape 

• Great!

• But wait …
Where do we get the new shape from? 
How does this link to endoscopy?

Sinha, A., Liu, X., Reiter, A., Ishii, M., Hager, G. D., & Taylor, R. H. (2018, September). Endoscopic navigation in the absence of CT imaging. In International 
Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 64-71). Springer, Cham.



Estimating Patient Anatomy

• Deformable registration
– Optimize shape model model parameters
– Align with endoscopic video

• Estimating unseen shapes      from endoscopic video

… some AI maybe?



This is what we are after here
Endoscopic image in  Depth map out

ConvNets are trained via backpropagation
 Need informative gradients
 Consequently, need informative loss

 How to supervise learning?



How to supervise monocular depth estimation?

Monocular depth estimation is currently popular 

General CV: Dedicated hardware to acquire paired data

https://www.cityscapes-dataset.com/examples/

https://www.cityscapes-dataset.com/examples/





https://www.healthdirect.gov.au/surgery/upper-gi-endoscopy-and-colonoscopy

http://www.alfasurgerycenter.com/procedures.html

How to supervise monocular depth estimation?

Remembering the application: Endoscopy
 Miniaturized equipment to inspect difficult to 

access anatomy
 Prohibitively disruptive to install dedicated hardware,

both stereo setup or depth sensing

G. Scadding et al., Diagnostic tools in 
Rhinology EAACI position paper, 2011.

https://www.healthdirect.gov.au/surgery/upper-gi-endoscopy-and-colonoscopy
http://www.alfasurgerycenter.com/procedures.html


How to supervise monocular depth estimation?

Mahmood, F., & Durr, N. J. (2018). Deep learning and conditional random fields-based depth 
estimation and topographical reconstruction from conventional endoscopy. Medical image 
analysis, 48, 230-243.

• Supervised training on simulated data from CT
• Real-to-synthetic conditional style transfer
 Depth prediction on style-transferred images

Explicit style transfer
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Mahmood, F., Chen, R., Sudarsky, S., Yu, D., & Durr, N. J. (2018). Deep learning with 
cinematic rendering: fine-tuning deep neural networks using photorealistic medical images. 
Physics in Medicine & Biology, 63(18), 185012.

• Supervised training on simulated data from CT
• Photorealistic volume rendering (N times)
 Depth prediction on acquired images

Realistic simulation + domain randomizationDomain mismatch: Training ↔ Application
 Challenges generalizability

How can we train directly on real endoscopy video?
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• Supervised training on simulated data from CT
• Photorealistic volume rendering (N times)
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Realistic simulation + domain randomization

Does this work for endoscopy?

Zhou, T., Brown, M., Snavely, N., & Lowe, D. G. (2017). Unsupervised learning of depth and 
ego-motion from video. In Proceedings of the IEEE CVPR (pp. 1851-1858).

• Predict depth on target, synthesize neighbor views
• Photometric reconstruction loss for training
 Self-supervision, directly on acquired video

Self-supervision



Merely an analogy, but … 
 Light source moves with camera
 No / limited photometric constancy in endoscopy
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Zhou, T., Brown, M., Snavely, N., & Lowe, D. G. (2017). Unsupervised learning of depth and 
ego-motion from video. In Proceedings of the IEEE CVPR (pp. 1851-1858).

• Predict depth on target, synthesize neighbor views
• Photometric reconstruction loss for training
 Self-supervision, directly on acquired video

Self-supervision

Snavely, N., Seitz, S. M., & Szeliski, R. (2006, July). Photo tourism: exploring photo 
collections in 3D. In ACM transactions on graphics (TOG) (Vol. 25, No. 3, pp. 835-846). ACM.

• Feature matching
• Triangulation and bundle adjustment
 Reconstruction from acquired images

Classical – Structure from Motion

Does this work for endoscopy?
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Mahmood, F., Chen, R., Sudarsky, S., Yu, D., & Durr, N. J. (2018). Deep learning with 
cinematic rendering: fine-tuning deep neural networks using photorealistic medical images. 
Physics in Medicine & Biology, 63(18), 185012.

• Supervised training on simulated data from CT
• Photorealistic volume rendering (N times)
 Depth prediction on acquired images

Realistic simulation + domain randomization

Zhou, T., Brown, M., Snavely, N., & Lowe, D. G. (2017). Unsupervised learning of depth and 
ego-motion from video. In Proceedings of the IEEE CVPR (pp. 1851-1858).

• Predict depth on target, synthesize neighbor views
• Photometric reconstruction loss for training
 Self-supervision, directly on acquired video

Self-supervision

Leonard, S., Reiter, A., Sinha, A., Ishii, M., Taylor, R. H., & Hager, G. D. (2016, March). 
Image-based navigation for functional endoscopic sinus surgery using structure from motion. 
In Medical Imaging 2016: Image Processing (Vol. 9784, p. 97840V).

• SURF feature matching, hierarchical refinement
• Triangulation and bundle adjustment
 Reconstruction from acquired images (sparse)

Classical – Structure from Motion

Yes(-ish).
So let’s use this, then!





Structure from motion (SfM)-based self-supervision 
• Run SfM on short video sequence (15 to 30 frames)
• Siamese network  Process multiple frames



Sparse Flow Loss 
• True 2D optical flow from 3D reconstructed points (SfM)
• Estimated optical flow from depth prediction



Depth Consistency Loss
• Differentiable warping operation to warp estimated depth into neighbor frame
• Enforces consistency among predictions





Dataset and Architecture

Liu, X., Sinha, A., Ishii, M., Hager, G. D., Reiter, A., Taylor, R. H., & Unberath, M. (2019). Self-supervised Learning for Dense Depth Estimation in Monocular 
Endoscopy. arXiv:1902.07766 and under review at IEEE TMI.

• Endoscopic video (no tools) of 6 consenting patients
– 8 minutes of video total; rectified, and downsampled to 256 x 320 pixels
– Different endoscopes for every patient
– 4 patients with corresponding CT data (ground truth, disregarding erectile tissue)



Dataset and Architecture

• Endoscopic video (no tools) of 6 consenting patients
– 8 minutes of video total; rectified, and downsampled to 256 x 320 pixels
– Different endoscopes for every patient
– 4 patients with corresponding CT data (ground truth, disregarding erectile tissue)

• Depth estimation architecture
– U-Net (8 M params): East to train on sparse signals but overfits heavily
– FC-DenseNet-57 (1.5 M params): Generalizes well but hard to train from scratch
– Teacher-Student approach

• Teacher self-supervised learning
• Teacher supervises student
• Student self-supervised learning

– Code available on GitHub: lppllppl920/EndoscopyDepthEstimation-Pytorch

Liu, X., Sinha, A., Ishii, M., Hager, G. D., Reiter, A., Taylor, R. H., & Unberath, M. (2019). Self-supervised Learning for Dense Depth Estimation in 
Monocular Endoscopy. arXiv:1902.07766 and under review at IEEE TMI.



Input Video

SfmLearner
recon.

Our depth

Our recon.

SfmLearner



Quantitative Results

• Leave-one-out training
• Randomly sample 20 frames per left-out patient

– Estimate depth
– Register to patient CT surface via GD-IMLOP (no shape deformation)
– Compute residual error

• Sub-millimeter accuracy in most cases!
– SfmLearner: > 10 mm
– Deep (dark) regions exhibit high variation
 Outliers

– CT is imperfect ground truth (erectile tissue)

Liu, X., Sinha, A., Ishii, M., Hager, G. D., Reiter, A., Taylor, R. H., & Unberath, M. (2019). Self-supervised Learning 
for Dense Depth Estimation in Monocular Endoscopy. arXiv:1902.07766 and under review at IEEE TMI.



Navigating Without Prior Information
Towards Next-generation Image Guidance



Potential sources of patient-specific models
– CT scans
– Statistical shape model
– … 

Can we build a patient-specific, dense 3D model 
– intra-operatively and 
– on-the-fly?

Estimating Patient-specific Anatomy



Potential sources of patient-specific models
– CT scans
– Statistical shape model
– … 

Can we build a patient-specific, dense 3D model 
– intra-operatively and 
– on-the-fly?

Yes, and we benefit two ways
– Bootstrapping for dense depth supervision
– Uncertainty of depth estimates

Estimating Patient-specific Anatomy






The big picture
1. Self-supervised training of depth estimation (now on long video sequences)



The big picture
1. Self-supervised training of depth estimation (now on long video sequences)
2. Volumetric fusion (truncated signed distance function)  Mean, STD

Fusion modified from: Curless, B., & Levoy, M. (1996). A volumetric method for building complex models from range images.
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The big picture
1. Self-supervised training of depth estimation (now on long video sequences)
2. Volumetric fusion (truncated signed distance function)  Mean, STD
3. Bootstrapping  Dense supervision of mean depth and uncertainty 

But wait, there’s more!



More big picture
• SfM results can be incorrect (few points etc.)  Fusion will be wrong
• Consistency between simulated and estimated depth  Failure detection
• If close  Pose graph refinement; If far off  Re-run SfM


















Results and Observations

• Again, leave-one-out and GD-IMPLOP 
to patient CT

• Sub-millimeter errors

• Error seems higher  Misleading
– Reconstruction is of ~ 1 minute video 

not just a single frame
– Registration has larger residual, 

but average is over much larger region



Concluding Remarks –
Accounting for Anatomical Change

Image Guidance for Endoscopic Procedures



Quantitative endoscopy
– Longitudinal monitoring of anatomical change
– E.g. for monitoring polyp behavior after steroid injection

The fairly untapped supreme discipline…
Monitoring anatomical change during surgery

– How to deal with tools?
– Blood, gore, and all other sorts of unseen variation?

Where do we go from here?



Thank you. 
Questions?
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