

Towards the next generation of image guidance for endoscopic procedures

CVPR Workshop on 3D Computer Vision in Medical Environments June 16th 2019

Mathias Unberath, PhD

Assistant Research Professor Department of Computer Science Johns Hopkins University

Xingtong Liu

Graduate Student Department of Computer Science

Ayushi Sinha, PhD

Assistant Research Scientist Computational Sensing and Robotics

Russell H Taylor, PhD John C. Malone Professor Department of Computer Science

Gregory Hager, PhD

Mandell Bellmore Professor Department of Computer Science

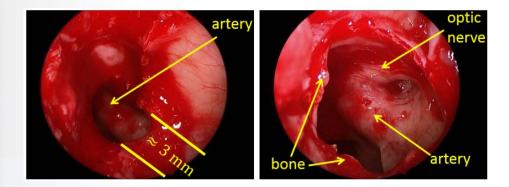
Masaru Ishii, MD Associate Professor Department of Otolaryngology

Some Background: Clinical and Technical

Navigating Sinus Surgery

Endoscopic Sinus Surgery

- Functional sinus surgery
 - Close proximity to critical structures
 - Surgical navigation desired



Challenges of Conventional Navigation

- Patient-specific 3D model of anatomy
 - Pre-operative (potentially outdated)
 - Obtained from CT scan (usually)

Intra-operative registration: Optical tracking

- CT to marker (via surface digitization)
- Endoscope / tool to anatomy
- \rightarrow Line of sight constraints
- → Visualization on model

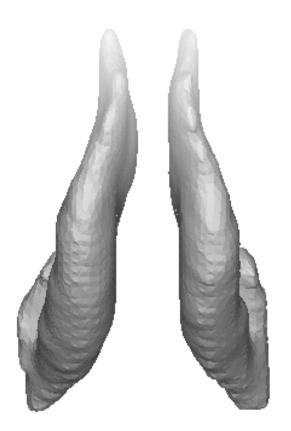
Challenges of Conventional Navigation

- Patient-specific 3D model of anatomy
 - Pre-operative (potentially outdated)
 - Obtained from CT scan (usually)
- Intra-operative registration: Optical tracking
 - CT to marker (via surface digitization)
 - Endoscope / tool to anatomy
 - \rightarrow Line of sight constraints
 - → Visualization on model

Observations

- Complex setups increase procedure time
- Disruptive workflows promote frustration
- → Where to innovate?

Step 1: Navigating in the Absence of CT



- Patient-specific 3D model of anatomy
 - Pre-operative (potentially outdated)
 - Obtained from CT scan (usually)

→ Population-derived atlas of sinus anatomy

- Intra-operative registration: Optical tracking
 - CT to marker (via surface digitization)
 - \rightarrow Model to video registration
 - Endoscope / tool to anatomy
 - \rightarrow Line of sight constraints
 - \rightarrow Visualization on model

Step 2: Navigating Without Prior Information

nt-specific 3D model of anatomy re-operative (potentially outdated) Obtained from CT scan (usually) econstructed from endoscopy sequence

-operative registration: Optical tracking T to marker (via surface digitization) Indoscope / tool to anatomy ine of sight constraints /isualization on model

Towards Next-generation Image Guidance

Navigating in the Absence of CT

Building the Population-based Model

- Build statistical shape models
 - Principal component analysis
 - Capture anatomical variation

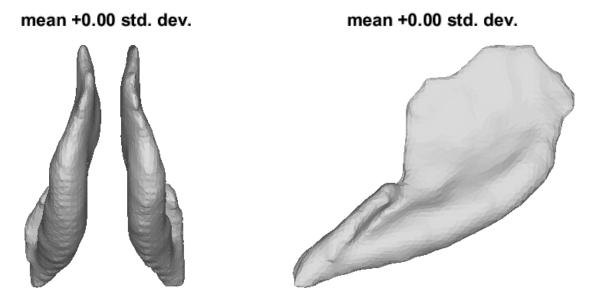
• Given shapes,
$$\mathbf{V} = [\mathbf{v}_1 \ \mathbf{v}_2 \dots \mathbf{v}_{\mathbf{n}_v}]^{\mathbf{T}}$$
 with correspondences, we can compute:

Mean:
$$\bar{\mathbf{V}} = \frac{1}{n_{s}} \sum_{i=1}^{n_{s}} \mathbf{V}_{i}$$
 Variance: $\Sigma = \frac{1}{n_{s}} \sum_{i=1}^{n_{s}} (\mathbf{V}_{i} - \bar{\mathbf{V}}) (\mathbf{V}_{i} - \bar{\mathbf{V}})^{\mathrm{T}}$
 $\Sigma = [\mathbf{m}_{1} \dots \mathbf{m}_{n_{s}}] \begin{bmatrix} \lambda_{1} & \\ & \ddots & \\ & & \lambda_{n_{s}} \end{bmatrix} [\mathbf{m}_{1} \dots \mathbf{m}_{n_{s}}]^{\mathrm{T}}$

Sinha, A., Liu, X., Reiter, A., Ishii, M., Hager, G. D., & Taylor, R. H. (2018, September). Endoscopic navigation in the absence of CT imaging. In *International Conference on Medical Image Computing and Computer-Assisted Intervention* (pp. 64-71). Springer, Cham.

Building the Population-based Model

- Build statistical shape models
 - Principal component analysis
 - Capture anatomical variation (middle turbinate)



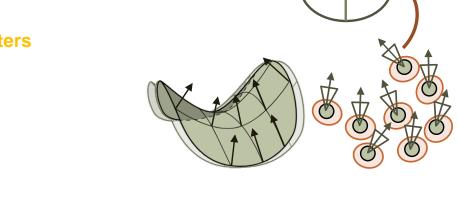
- Deformable registration
 - Optimize shape model model parameters
 - Align with endoscopic video
- Given a new shape $\mathbf{V}^{*}\!\!,$ we can compute:

Weights:
$$s_i = \mathbf{w}_i^{\mathrm{T}} (\mathbf{V}^* - \bar{\mathbf{V}})$$
 Estimated shape: $\tilde{\mathbf{V}}^* = \bar{\mathbf{V}} + \sum_{i=1}^{n_{\mathrm{m}}} s_i \mathbf{w}_i$
 $\mathbf{w}_i = \sqrt{\lambda_i} \mathbf{m}_i$

m

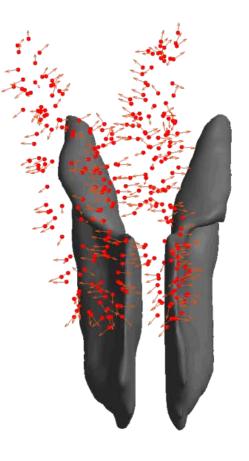
- Deformable registration
 - **Optimize shape model model parameters**
 - Align with endoscopic video -
- Simultaneously, align rigidly

Can be solved with the Generalized Deformable Most Likely Oriented Point (GD-IMLOP) algorithm



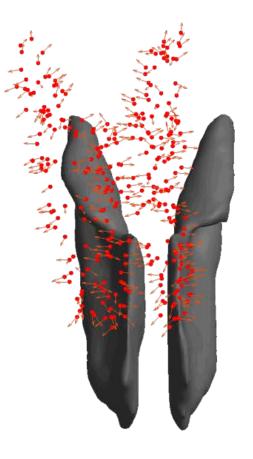
- Deformable registration
 - Optimize shape model model parameters
 - Align with endoscopic video
- Simultaneous deformable and rigid alignment to unseen shape \mathbf{V}^*

• Great!

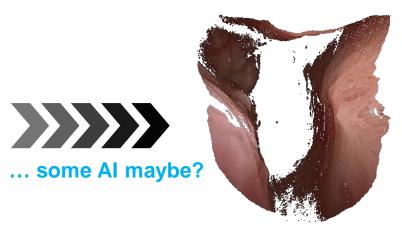


Sinha, A., Liu, X., Reiter, A., Ishii, M., Hager, G. D., & Taylor, R. H. (2018, September). Endoscopic navigation in the absence of CT imaging. In *International Conference on Medical Image Computing and Computer-Assisted Intervention* (pp. 64-71). Springer, Cham.

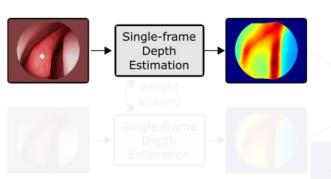
- Deformable registration
 - Optimize shape model model parameters
 - Align with endoscopic video
- Simultaneous deformable and rigid alignment to unseen shape \mathbf{V}^*
- Great!
- But wait ... Where do we get the new shape from? How does this link to endoscopy?



- Deformable registration
 - Optimize shape model model parameters
 - Align with endoscopic video
- Estimating unseen shapes V^{\ast} from endoscopic video



Training Phase



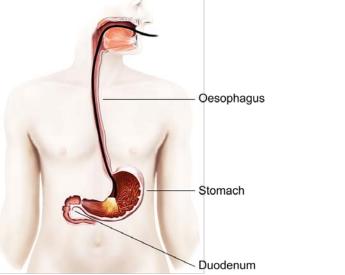
This is what we are after here Endoscopic image in \rightarrow Depth map out

ConvNets are trained via backpropagation
→ Need informative gradients
→ Consequently, need informative loss

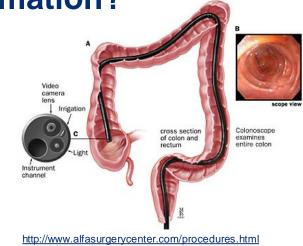
 \rightarrow How to supervise learning?

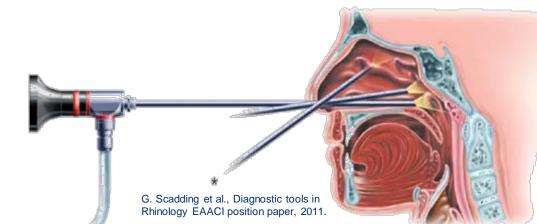
Remembering the application: Endoscopy

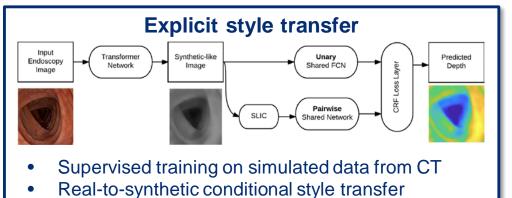
- → Miniaturized equipment to inspect difficult to access anatomy
- → Prohibitively disruptive to install dedicated hardware, both stereo setup or depth sensing



https://www.healthdirect.gov.au/surgery/upper-gi-endoscopy-and-colonoscopy





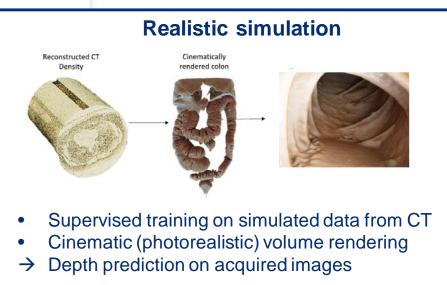


→ Depth prediction on style-transferred images

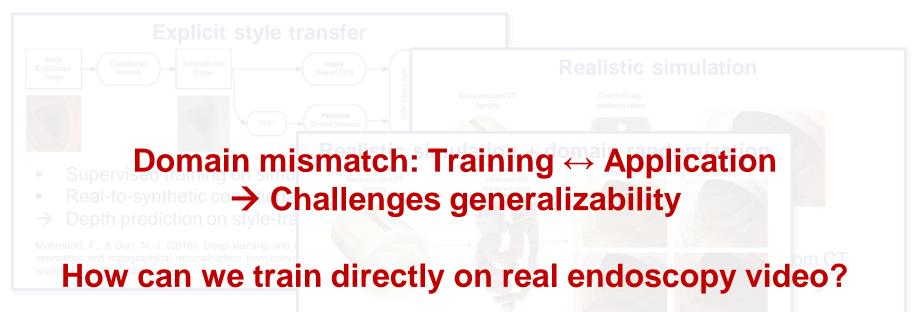
Mahmood, F., & Durr, N. J. (2018). Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy. *Medical image analysis*, *48*, 230-243.

- Supervised training on simulated data fror
- Real-to-synthetic conditional style transfel
- → Depth prediction on style-transferred imag

Mahmood, F., & Durr, N. J. (2018). Deep learning and conditional random fields estimation and topographical reconstruction from conventional endoscopy. *Med analysis*, 48, 230-243.



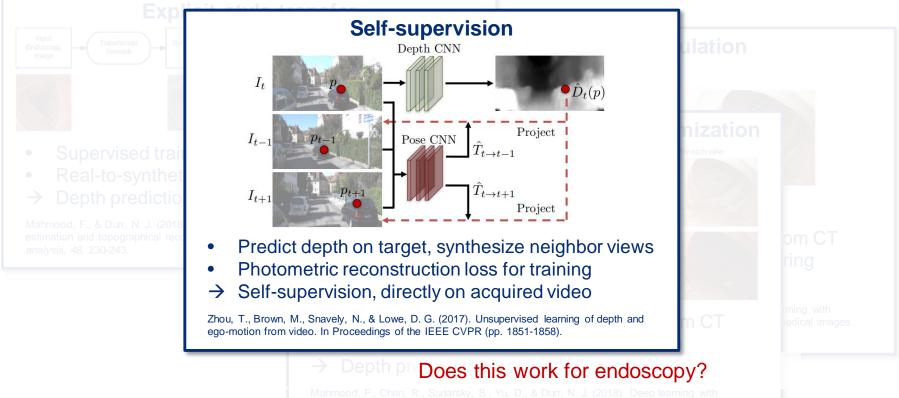
Mahmood, F., Chen, R., Sudarsky, S., Yu, D., & Durr, N. J. (2018). Deep learning with cinematic rendering: fine-tuning deep neural networks using photorealistic medical images. Physics in Medicine & Biology, 63(18), 185012.



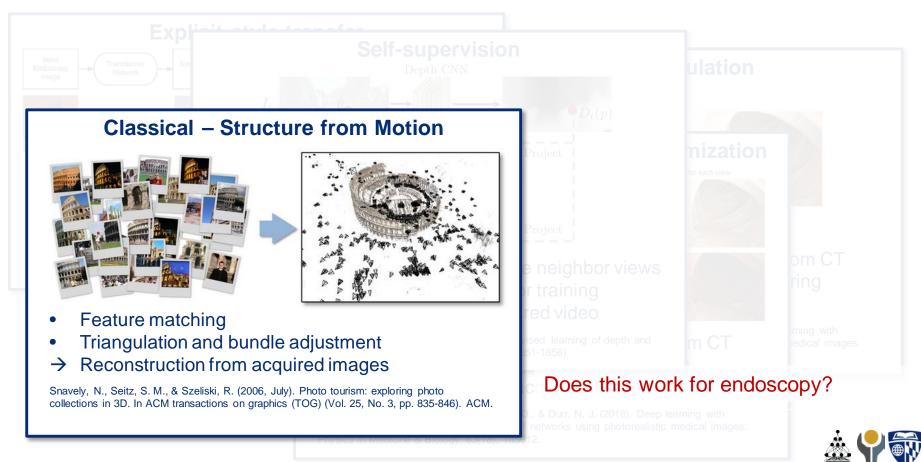
- Supervised training on simulated data from CT
- Photorealistic volume rendering (N times)
- \rightarrow Depth prediction on acquired images

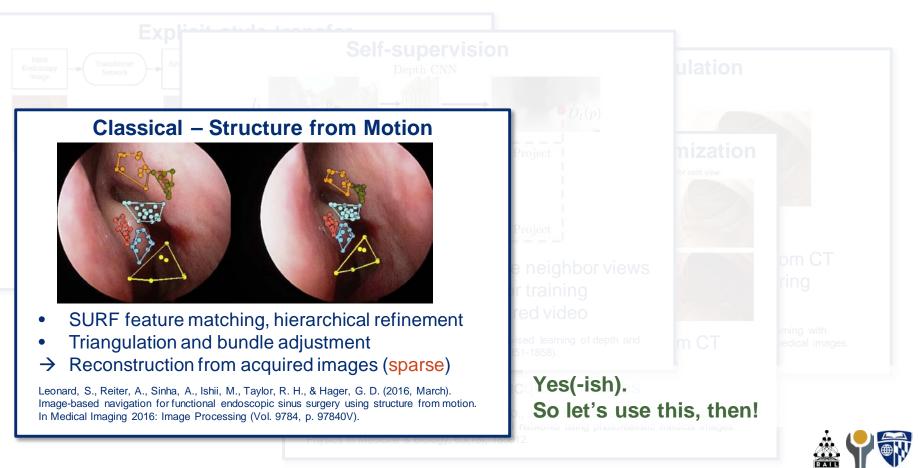
Mahmood, F., Chen, R., Sudarsky, S., Yu, D., & Durr, N. J. (2018). Deep learning with cinematic rendering: fine-tuning deep neural networks using photorealistic medical images. Physics in Medicine & Biology, 63(18), 185012.

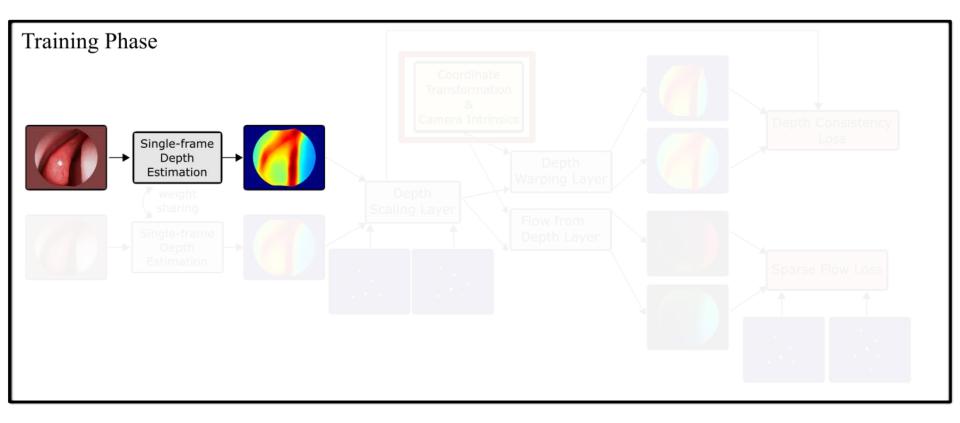
rning with edical images.

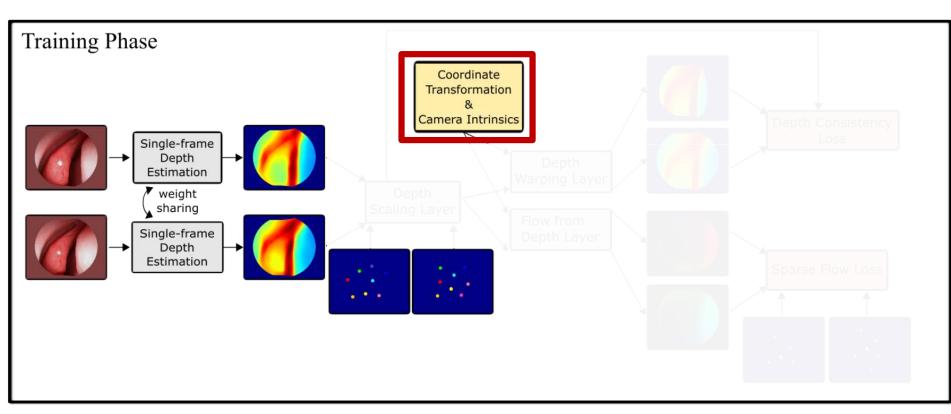


cinematic rendering: fine-tuning deep neural networks using photorealistic medical images Physics in Medicine & Biology, 63(18), 185012.



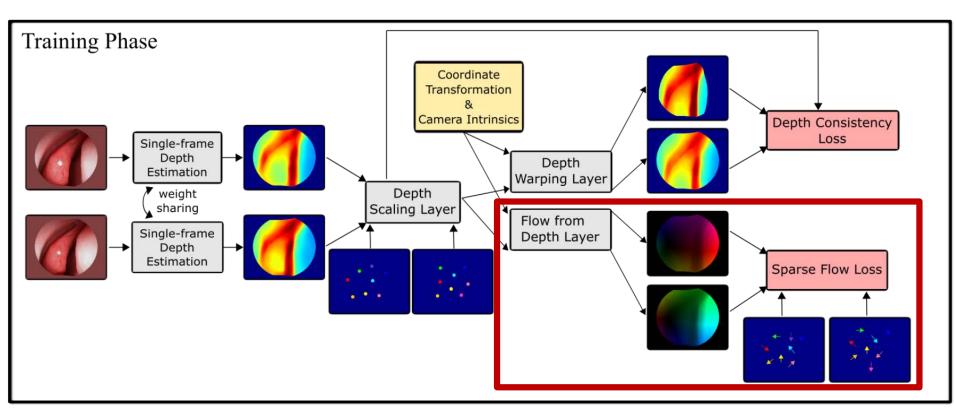






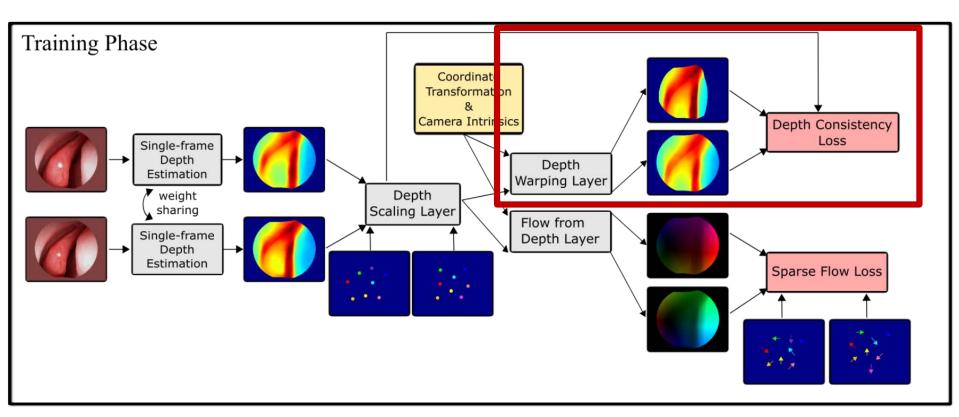
Structure from motion (SfM)-based self-supervision

- Run SfM on short video sequence (15 to 30 frames)
- Siamese network → Process multiple frames



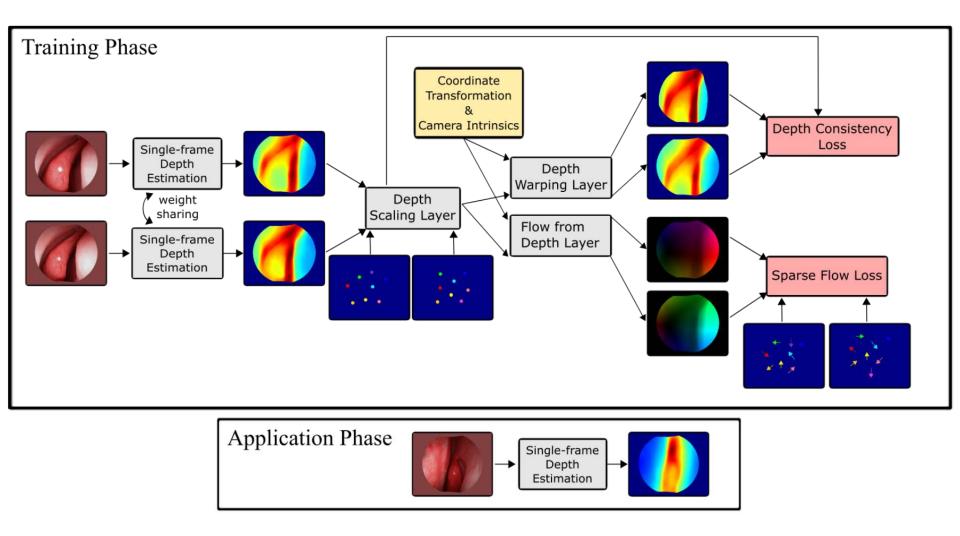
Sparse Flow Loss

- True 2D optical flow from 3D reconstructed points (SfM)
- Estimated optical flow from depth prediction



Depth Consistency Loss

- Differentiable warping operation to warp estimated depth into neighbor frame
- Enforces consistency among predictions



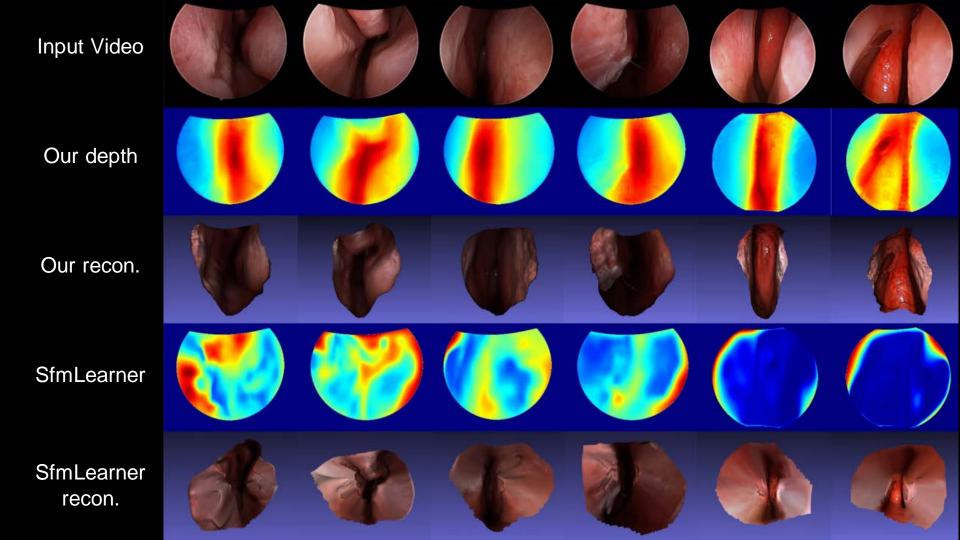
Dataset and Architecture

- Endoscopic video (no tools) of 6 consenting patients
 - 8 minutes of video total; rectified, and downsampled to 256 x 320 pixels
 - Different endoscopes for every patient
 - 4 patients with corresponding CT data (ground truth, disregarding erectile tissue)

Dataset and Architecture

- Endoscopic video (no tools) of 6 consenting patients
 - 8 minutes of video total; rectified, and downsampled to 256 x 320 pixels
 - Different endoscopes for every patient
 - 4 patients with corresponding CT data (ground truth, disregarding erectile tissue)
- Depth estimation architecture
 - U-Net (8 M params): East to train on sparse signals but overfits heavily
 - FC-DenseNet-57 (1.5 M params): Generalizes well but hard to train from scratch
 - Teacher-Student approach
 - Teacher self-supervised learning
 - Teacher supervises student
 - Student self-supervised learning
 - Code available on GitHub: lppllppl920/EndoscopyDepthEstimation-Pytorch

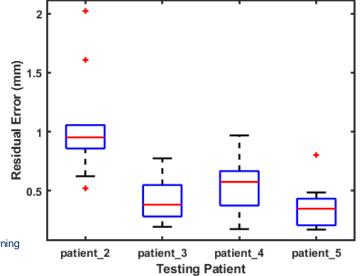
Liu, X., Sinha, A., Ishii, M., Hager, G. D., Reiter, A., Taylor, R. H., & Unberath, M. (2019). Self-supervised Learning for Dense Depth Estimation in Monocular Endoscopy. arXiv:1902.07766 and under review at IEEE TMI.



Quantitative Results

- Leave-one-out training
- Randomly sample 20 frames per left-out patient
 - Estimate depth
 - Register to patient CT surface via GD-IMLOP (no shape deformation)
 - Compute residual error

- Sub-millimeter accuracy in most cases!
 - SfmLearner: > 10 mm
 - Deep (dark) regions exhibit high variation
 → Outliers
 - CT is imperfect ground truth (erectile tissue)

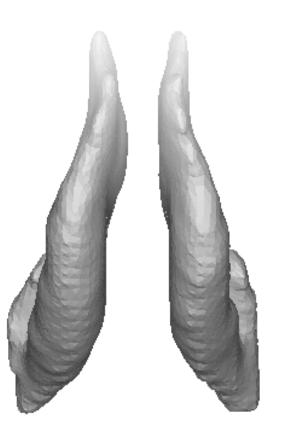


Liu, X., Sinha, A., Ishii, M., Hager, G. D., Reiter, A., Taylor, R. H., & Unberath, M. (2019). Self-supervised Learning for Dense Depth Estimation in Monocular Endoscopy. arXiv:1902.07766 and under review at IEEE TMI.

Towards Next-generation Image Guidance

Navigating Without Prior Information

Estimating Patient-specific Anatomy



Potential sources of patient-specific models

CT scans

. . .

- Statistical shape model

Can we build a patient-specific, dense 3D model

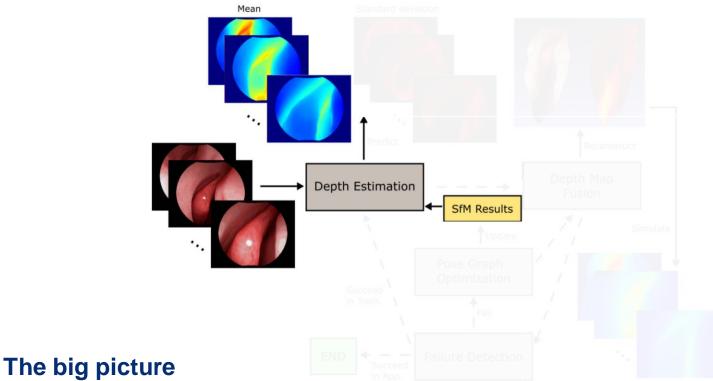
- intra-operatively and
- on-the-fly?

Estimating Patient-specific Anatomy

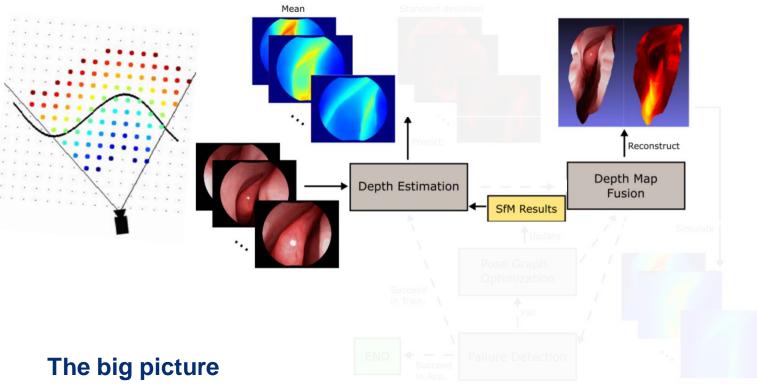
I sources of patient-specific models T scans tatistical shape model

build a patient-specific, dense 3D model tra-operatively and n-the-fly?

d we benefit two ways ootstrapping for dense depth supervision Incertainty of depth estimates

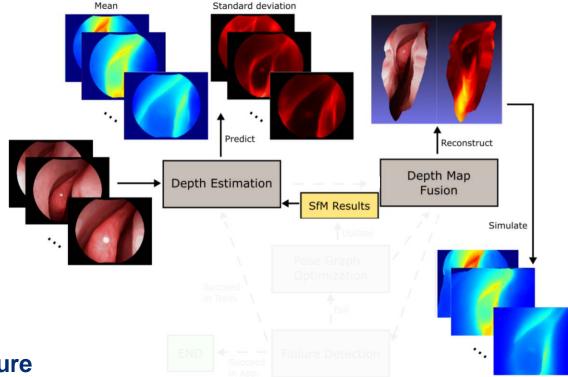


1. Self-supervised training of depth estimation (now on long video sequences)



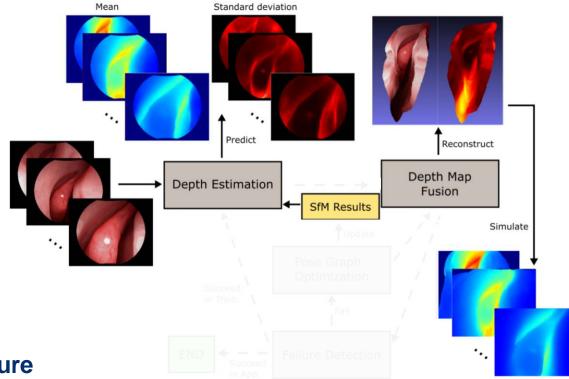
- 1. Self-supervised training of depth estimation (now on long video sequences)
- 2. Volumetric fusion (truncated signed distance function) \rightarrow Mean, STD

Fusion modified from: Curless, B., & Levoy, M. (1996). A volumetric method for building complex models from range images.



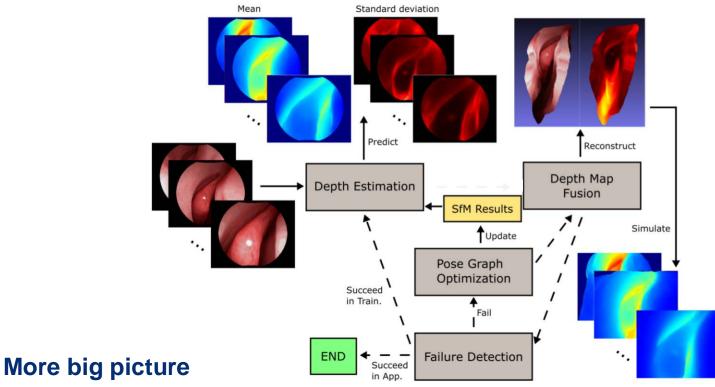
The big picture

- 1. Self-supervised training of depth estimation (now on long video sequences)
- 2. Volumetric fusion (truncated signed distance function) \rightarrow Mean, STD
- 3. Bootstrapping \rightarrow Dense supervision of mean depth and uncertainty



The big picture

- Self-supervised training of depth estimation (now on long video sequences)
- 2. Volumetric fusion (trunca **But wait, there's more!** ion) \rightarrow Mean, STD
- 3. Bootstrapping \rightarrow Dense supervision of mean depth and uncertainty



- SfM results can be incorrect (few points etc.) → Fusion will be wrong
- Consistency between simulated and estimated depth → Failure detection
- If close → Pose graph refinement; If far off → Re-run SfM

Results and Observations

- Again, leave-one-out and GD-IMPLOP to patient CT
- Sub-millimeter errors
- Error seems higher → Misleading
 - Reconstruction is of ~ 1 minute video not just a single frame
 - Registration has larger residual, but average is over much larger region

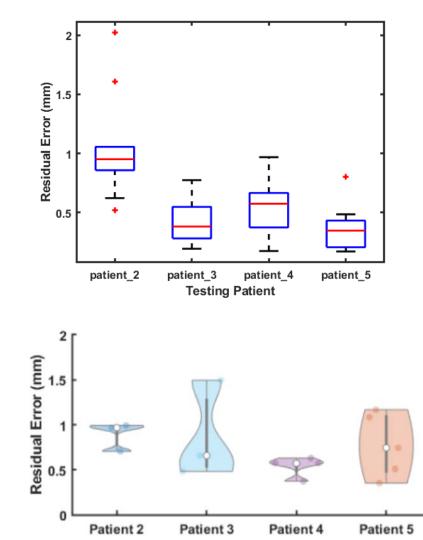


Image Guidance for Endoscopic Procedures

Concluding Remarks – Accounting for Anatomical Change

Where do we go from here?

Quantitative endoscopy

- Longitudinal monitoring of anatomical change
- E.g. for monitoring polyp behavior after steroid injection

The fairly untapped supreme discipline... Monitoring anatomical change during surgery

- How to deal with tools?
- Blood, gore, and all other sorts of unseen variation?

Thank you. Questions?

